1,480 research outputs found

    High energy astrophysics and high altitude laboratories

    Get PDF
    These are some summary remarks given at the Chacaltaya meeting on cosmic ray physics, held in La Paz (Bolivia), July 23-27, 2000. The meeting covered a wide range of top ics in cosmic ray p hysics and high energy astrop hysics. This contribution briefly touches on some of the highlights of the meeting, and discusses the important role that high-altitude laboratories can have in the future of these fundamental fields

    Gamma astronomy from space

    Get PDF
    In this contribution I will review the status of Îł-astronomy at energies larger than ∌ 30 MeV from satellites. The measurements of the instruments aboard the Compton Gamma Ray Observatory have given a tremendous boost to this field of research, with Îł-rays observed from a wide range of galactic and extra-galactic sources. The missions planned for the near future will be briefly summarized

    Neutrino Decay and Atmospheric Neutrinos

    Get PDF
    We reconsider neutrino decay as an explanation for atmospheric neutrino observations. We show that if the mass-difference relevant to the two mixed states \nu_\mu and \nu_\tau is very small (< 10^{-4} eV^2), then a very good fit to the observations can be obtained with decay of a component of \nu_\mu to a sterile neutrino and a Majoron. We discuss how the K2K and MINOS long-baseline experiments can distinguish the decay and oscillation scenarios.Comment: 9 pages, Revtex, uses epsf.sty, 3 postscript figures. Additions and corrections to references, minor changes in the text and to some number

    A 3-Dimensional Calculation of Atmospheric Neutrino Flux

    Get PDF
    An extensive 3-dimensional Monte Carlo calculation of the atmospheric neutrino flux is in progress with the FLUKA Monte Carlo code. The results are compared to those obtained under the 1-dimensional approximation, where secondary particles and decay products are assumed to be collinear to the primary cosmic ray, as usually done in most of the already existing flux calculations. It is shown that the collinear approximation gives rise to a wrong angular distribution of neutrinos, essentially in the Sub-GeV region. However, the angular smearing introduced by the experimental inability of detecting recoils in neutrino interactions with nuclei is large enough to wash out, in practice, most of the differences between 3-dimensional and 1-dimensional flux calculations. Therefore, the use of the collinear approximation should have not introduced a significant bias in the determination of the flavor oscillation parameters in current experiments.Comment: 27 pages, 14 figures. To be submitted to Astroparticle Physics. To be submitted to Astroparticle Physic

    The emission spectrum of the strong Fe II emitter BAL Seyfert 1 galaxy IRAS 07598+6508

    Full text link
    The narrow-line Seyfert 1 galaxy IRAS 07598+6508 is known to be a stong Fe II emitter. The analysis of several high S/N ratio spectra shows that its spectrum is dominated by a relatively narrow "broad line" region (1 780 km s−1^{-1} FWHM) emitting not only Fe II, but also Ti II and Cr II lines. Although we were unable to find a completely satisfactory physical model, we got the best agreement with the observations with collisional rather than radiative models, with a high density (n=1015^{15} cm−3^{-3}), a high column density (NH_{H}=1025^{25} cm−2^{-2}) and a microturbulence of 100 km s−1^{-1}. This BLR is qualitatively similar to the one observed in I Zw 1. We have not found traces in IRAS 07598+6508 of the narrow line regions found in I Zw 1.Comment: 15 pages, 4 figures, accepted by A&

    A Monte Carlo Calculation of Atmospheric Muon and Neutrino Fluxes

    Get PDF
    Production of muons and neutrinos in cosmic ray interactions with the atmosphere has been investigated with a cascade simulation program based on Lund Monte Carlo programs. The resulting `conventional' muon and neutrino fluxes (from π,K\pi ,K decays) agree well with earlier calculations, whereas the improved charm particle treatment used in this study gives significantly lower `prompt' fluxes compared to earlier estimates. This implies better prospects for detecting very high energy neutrinos from cosmic sources.Comment: 4 pages, uuencoded and gziped ps-fil

    Determining the sign of Δ31\Delta_{31} at long baseline neutrino experiments

    Full text link
    Recently it is advocated that high intensity and low energy (EΜ∌2GeV)(E_\nu \sim 2 GeV) neutrino beams should be built to probe the (13)(13) mixing angle ϕ\phi to a level of a few parts in 10410^4. Experiments using such beams will have better signal to background ratio in searches for ΜΌ→Μe\nu_\mu \to \nu_e oscillations. We propose that such experiments can also determine the sign of Δ31\Delta_{31} even if the beam consists of {\it neutrinos} only. By measuring the ΜΌ→Μe\nu_\mu \to \nu_e transitions in two different energy ranges, the effects due to propagation of neutrinos through earth's crust can be isolated and the sign of Δ31\Delta_{31} can be determined. If the sensitivity of an experiment to ϕ\phi is Ï”\epsilon, then the same experiment is automatically sensitive to matter effects and the sign of Δ31\Delta_{31} for values of ϕ≄2Ï”\phi \geq 2 \epsilon.Comment: Title changed and paper rewritten. 4 pages, 1 figure, revte

    Comparison of 3-Dimensional and 1-Dimensional Schemes in the calculation of Atmospheric Neutrinos

    Get PDF
    A 3-dimensional calculation of atmospheric neutrinos flux is presented, and the results are compared with those of a 1-dimensional one. In this study, interaction and propagation of particles is treated in a 3-dimensional way including the curvature of charged particles due to the geomagnetic field, which is assumed to be a dipole field. The purpose of this paper is limited to the comparison of calculation schemes. The updated flux value with new interaction model and primary flux model will be reported in a separate paper. Except for nearly horizontal directions, the flux is very similar to the result of 1 dimensional calculations. However, for near-horizontal directions an enhancement of the neutrino flux is seen even at energies as high as 1 GeV. The production height of neutrinos is lower than the prediction by 1-dimensional calculation for near-horizontal directions, and is a little higher for near-vertical directions. However, the difference is not evident except for near-horizontal directions.Comment: 22 pages, 15figure
    • 

    corecore